

Indirect Calorimetry Device Comparison and Q-NRG+ Features

BACKGROUND

- Indirect Calorimetry (IC) is considered the gold standard to determine daily energy requirements of critically ill patients.^{1,2,3}
- ESPEN recommends and ASPEN suggests the use of IC on critically ill mechanically ventilated patients to determine Energy Expenditure (EE), if available.^{5,6}
- Q-NRG+ overcomes current barriers of use with other IC devices by having minimal warm-up/calibration times, faster test time, ease of use and demonstrated accuracy.⁴

THE NEED

- EE is highly variable according to the initial injury, severity of disease, nutritional status, lean body mass, frequent changes in clinical condition, and treatment interventions.^{4,7}
- Predictive formulas used to calculate EE are inaccurate and not clinically relevant.^{4,8,9}
- Inaccurate Resting Energy Expenditure (REE) may lead to under- or overfeeding.4,8,9

COMPARISON OF DEVICE FEATURES

Technical features of the Q-NRG+ and comparator indirect calorimeters. All systems are open-circuit devices. The table below of listed features can be found in the respective user manuals.

Device Name	Technology (Chamber type)	Patient Type	Warm-up Time	Fraction of Inhaled Oxygen (FiO ₂) Range	Calibration (w/syringe)	Power Supply
Q-NRG+ (COSMED, Italy) ^{4,12}	Mixing chamber	Spontaneously breathing Ventilated	5 min upon device start	≤70%	Monthly	Li-Ion battery & AC Power
Deltatrac II* (Datex, Finland) ^{4,13}	Mixing chamber	Spontaneously breathing Ventilated	30 min prior to every test	≼60%	Daily	AC Power Only (no battery)
Quark RMR (COSMED, Italy) ^{4,14}	Breath by breath	Spontaneously breathing Ventilated	30 min prior to every test	≤60%	Daily	AC Power Only (no battery)
Vmax Encore (Vyaire, California) ^{4,15}	Breath by breath Mixing chamber	Spontaneously breathing Ventilated	30 min prior to every test	≼60%	Daily	AC Power Only (no battery)
E-COVX (Datex-Ohmeda, Finland) ^{4,16}	Breath by breath	Ventilated only	30 min when module transferred to new ventilator	≼65%	N/A	Vent/Monitor dependent
CCM Express (MGC, Minnesota) ^{4,17}	Breath by breath	Spontaneously breathing Ventilated	30 min prior to every test	≼60%	Daily	AC Power Only (no battery)

*No longer commercially available.

Q-NRG+: Fast and Accurate

In a prospective, unblinded, observational, multicenter study with 277 adult, mechanically ventilated ICU patients, Q-NRG+ consistently led to faster test times (5.1 - 10.9 min).

Validation of Indirect Calorimetry vs. Mass Spectrometry¹¹ Adapted from: Oshima T, et al. Clin Nutr ESPEN 2019

Q-NRG+ was able to generate results within pre-defined limits (+/-5%) for VO₂ and VCO₂ simulations at FiO₂ settings of 21-70%.¹¹

Validation of Canopy Mode vs. Mass Spectrometry¹⁰ Adapted from: Delsoglio M, et al. Clin Nutr 2019

High correlation shown between the Q-NRG+ canopy mode and mass spectrometry for EE (r=0.997; p <0.001). $^{\rm 10}$

OVERALL CONCLUSIONS

- 1) Q-NRG+ is an indirect calorimeter that provides results within 10 to 15 minutes (includes warm-up, calibration, and test times). It does not require daily syringe calibration.⁴
- 2) Q-NRG+ is the only current indirect calorimeter on the market that offers the ability to measure REE in mechanically ventilated patients with FiO₂ up to 70%.¹¹
- 3) Q-NRG+ is accurate and validated vs. mass spectrometry for use with a canopy hood in addition to use in ventilator mode.^{10,11}

Intended Use: This device is intended for the measurement of REE for spontaneously breathing and ventilated patients, with some limitations in accordance with labeling, within the following population: spontaneously breathing subjects >15 Kg (33 lb), when tested with the Canopy dilution technique, ventilated subjects >age 10 and >10 Kg (22 lb), and spontaneously breathing subjects > age 6 and >10 Kg (22 lb), when tested with Face Mask. This device is not suitable for operating in presence of flammable anesthetic gases or gases other than O_2 , O_2 , N_2 and water vapor. The device is to be used by physicians or by trained personnel under the responsibility of a physician. The device is not intended as a continuous monitoring device for surveillance of vital physiological processes. **Warnings:** This device is allowed because the safety of the device towards patients and operators is not affected, since the final evaluation is performed on the outcome data measured during a complete test. No modification of this device is allowed. For more information on this medical device, please refer to the User Manual.

REFERENCES

 Oshima T, et al. Clin Nutr 2017;36:651-62. 2. De Waele E, et al. Minerva Anesthes 2015;81:272-82. 3. Frankenfield D, Ashcraft C. J Parenter and Enteral Nutr 2011;35:563-70. 4. Oshima T, et al. Clin Nutr 2020;doi.org/10.1016/j.clnu.2020.01.017. 5. McClave S, et al. J Parenter and Enteral Nutr 2016;40:159-211. 6. Singer P, et al. Clin Nutr 2019;38:48-79. 7. Rattanachaiwong S, Singer P, Clin Nutr 2019;38:2531-44. 8. Zusman O, et al. Clin Nutr 2019;38:1206-10. 9. Graf S, et al. Clin Nutr 2017;36:224-28. 10. Delsoglio M, et al. Clin Nutr 2019;81:387. 11. Oshima T, et al. Clin Nutr ESPEN 2019;32:50-55.
2. O-NRG+ User Manual 2019 13. Deltatrac II User Manual 1994 14. Quark RMR User Manual 2020 15. Vmax Encore User Manual 2002 16. E-COVX User Manual 2011 17. CCM Express User Manual 2012

www.baxter.com Baxter Healthcare Corporation One Baxter Parkway, Deerfield, IL 60015 USA

Baxter is a registered trademark of Baxter International Inc. Q-NRG+ and Quark RMR are registered trademarks of COSMED. All other trademarks are the property of their respective owners.

0476